Solving Covering / Packing LPs via Saddle-point Problems
Antares Chen University of Chicago
Abstract
Packing linear programs and their dual covering linear programs are special cases of linear programming where the variables, coefficients, and constraints are non-negative. In this talk, we present some initial calculations that derive an algorithm for approximately solving packing and covering LPs via minimizing the duality gap – the difference between the packing and covering objectives. An interesting aspect of our calculations is that the duality gap comes from reformulating the LP as a 2-v-2 game captured by a saddle point problem. Our algorithm emerges by requiring players of the game to adopt a specific strategy. However, other algorithms with potentially faster convergence rates may emerge by requiring players of the 2-v-2 game to adopt other strategies. Based on joint work with Lorenzo Orecchia, and Erasmo Tani.
Date
Feb 16, 2022 12:30 PM — 1:30 PM